On the Complexity of Dualization of Monotone Disjunctive Normal Forms

نویسندگان

  • Michael L. Fredman
  • Leonid Khachiyan
چکیده

We show that the duality of a pair of monotone disjunctive normal forms of size n can be tested in n oŽlog n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone Boolean dualization is in co-NP[log2n]

In 1996, Fredman and Khachiyan [J. Algorithms 21 (1996) 618–628] presented a remarkable algorithm for the problem of checking the duality of a pair of monotone Boolean expressions in disjunctive normal form. Their algorithm runs in no(logn) time, thus giving evidence that the problem lies in an intermediate class between P and co-NP. In this paper we show that a modified version of their algori...

متن کامل

The Nondeterministic Complexity of the Fredman and Khachiyan Algorithm for the Dualization of Monotone DNFs ”

In 1996, Fredman and Khachiyan [Journal of Algorithms, 21:618–628, 1996] presented a remarkable algorithm for the problem of checking the duality of a pair of monotone disjunctive normal forms. Their algorithm runs in no(log n) time, thus giving evidence that the problem lies in an intermediate class between P and co-NP. In this paper we show that a modified version of their algorithm requires ...

متن کامل

On Berge Multiplication for Monotone Boolean Dualization

Given the prime CNF representation φ of a monotone Boolean function f : {0, 1} 7→ {0, 1}, the dualization problem calls for finding the corresponding prime DNF representation ψ of f . A very simple method (called Berge multiplication [3, Page 52–53]) works by multiplying out the clauses of φ from left to right in some order, simplifying whenever possible using the absorption law. We show that f...

متن کامل

Berge Multiplication for Monotone Boolean Dualization

Given the prime CNF representation φ of a monotone Boolean function f : {0, 1} 7→ {0, 1}, the dualization problem calls for finding the corresponding prime DNF representation ψ of f . A very simple method (called Berge multiplication [3, Page 52–53]) works by multiplying out the clauses of φ from left to right in some order, simplifying whenever possible using the absorption law. We show that f...

متن کامل

Monotone, Horn and Quadratic Pseudo-Boolean Functions

A pseudo-Boolean function (pBf) is a mapping from f0; 1gn to the real numbers. It is known that pseudo-Boolean functions have polynomial representations, and it was recently shown that they also have disjunctive normal forms (DNFs). In this paper we relate the DNF syntax of the classes of monotone, quadratic and Horn pBfs to their characteristic inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Algorithms

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1996